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ABSTRACT

The method of characteristics (MOC) is a popular method for efficiently solving two-dimensional
reactor problems. Extensions to three dimensions have been attempted with mitigated success bringing
into question the ability of performing efficient full core three-dimensional (3D) analysis. Although
the 3D problem presents many computational difficulties, some simplifications can be made that allow
for more efficient computation. In this investigation, we present SimpleMOC, a “mini-app” which
mimics the computational performance of a full 3D MOC solver without involving the full physics
perspective, allowing for a more straightforward analysis of the computational challenges. A variety of
simplifications are implemented that are intended to increase the computational feasibility, including the
formation axially-quadratic neutron sources. With the addition of the quadratic approximation to the
neutron source, 3D MOC is cast as a CPU-intensive method with the potential for remarkable scalability
on next generation computing architectures.
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1 INTRODUCTION

Over the last few decades computational power has grown exponentially with growing transistor
count according to Moore’s Law [1]. This has allowed previously intractable computational
problems to be investigated. For reactor physics simulations, this means the long time goal of
achieving full-core three-dimensional (3D) transport reactor simulations is now within reach. While
two-dimensional assembly and core transport calculations have “reached industrial maturity” [2],
they suffer from a loss of accuracy when compared with three-dimensional models. For high fidelity
modeling, the third dimension is necessary to correctly predict neutron leakage as well as axial power
distributions in heterogeneous reactors. One attractive method for three-dimensional modeling is
the Method of Characteristics (MOC). This method is commonly used in two-dimensional neutron
transport simulations and is naturally extensible to three dimensions.
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While MOC is easily extensible to three dimensions conceptually, the implementation of such
an algorithm is difficult in practice as the computational requirements can be overwhelming [3]. This
motivates the development of a “mini-app” named SimpleMOC which replicates the computational
performance of a full 3D MOC solver but lacks elements necessary to achieve full solutions. For
instance, SimpleMOC mimics access patterns likely to be cache misses by randomly selecting
locations in memory from which to load data. This simplified application allows for much easier
analysis of computational performance.

2 SimpleMOC PHYSICS ASSUMPTIONS

For accurate replication of the 3D MOC computational performance, assumptions need to be
made about how the full 3D MOC solver would be structured. In this investigation, we make a
variety of assumptions intended to increase computational performance. These assumptions include
axially extruded geometries, on-the-fly axial ray tracing, and axially-quadratic sources.

2.1 Geometrical Simplifications

To reduce the memory and CPU requirements associated with 3D ray tracing, the geometry is
assumed to be axially extruded. This means that one radial plane is formed which is a superposition
of all radial detail. An example is shown in Fig. 1.

Figure 1. Depiction of extruded geometry and compression of the 3D geometry into a radial
plane which is formed by a superposition of all radial geometrical information.

Once this radial plane is formed, all axial ray tracing can be decoupled from the radial
ray tracing. This allows for common ray tracing and storage of track segment lengths to be
conducted on the radial plane using the same ray tracing schemes employed for standard 2D
MOC implementations. For SimpleMOC, a pre-computed 2D ray tracing file is loaded from an
external application, such as OpenMOC [4]. During the computation of angular flux attenuation,
on-the-fly ray tracing is conducted in the axial direction using only a 1D grid, which involves trivial
computational resources.
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Each loaded 2D track is used to create multiple 3D tracks. First, the 2D track is projected in
the axial direction at multiple polar angles θ ∈ (0, π). Then for each polar angle, a set of tracks is
created with some axial separation to fill the entire axial height, forming set of “z-stacked” tracks.
This ensures that the tracks span the entire polar and axial spaces. During transport sweeps, each set
of z-stacked rays is traversed until all tracks in the set have either completed all 2D segments or
have exited through the top or bottom surfaces. When a track encounters a boundary defined by the
simple 1D axial grid, the 2D segment length is shortened by 2D distance traversed in the current
region and then continued until completion or intersection with a domain boundary.

2.2 Axially-Quadratic Sources

Due to the structure of common reactor designs allowing for the success of the popular 2D/1D
transport methods [5–7], it is believed that over large axial regions (on the order of 15 cm) the cross-
sections can be approximated as being constant. For the 2D/1D methods to have any reasonable
success, this must be true, as 2D/1D methods only weakly incorporate axial detail. Constant cross-
section axial regions including neutron source information would have the capability to include far
more axial information.

In each constant cross-section region, the neutron source is approximated as quadratic in the
axial direction. This is motivated by past success of implementing quadratic source approximations
in nodal methods [8]. Most MOC implementations rely on the use of flat source regions over which
the neutron source and cross-sections are assumed to be constant [9]. Common implementations of
higher order sources involve tallying flux moments during the transport sweep iterations [10]. After
each transport sweep, new sources are calculated for the next transport sweep by first reconstructing
the scalar flux and then calculating the contribution from each group flux to all group sources. This
calculation has a computational complexity of Θ(NG2) where N is the number of source regions
and G is the number of energy groups. For a high number of energy groups, this computation can
become cumbersome. This is troubling since high fidelity calculations require on the order of 100
energy groups.

Therefore, SimpleMOC employs an alternative strategy. Taking advantage of the fact that
large coarse axial regions can be approximated as having constant cross-sections, each coarse axial
region is split into several fine axial regions. The source contribution in each fine axial region can
be directly formed on-the-fly during the transport sweeps with the source strength calculated by
fitting a quadratic function to the neighboring fine axial regions. To simplify the process and lessen
computational requirements, the fitting routine only involves the fine axial region being traversed
and the neighboring fine axial regions. Since three points uniquely defines a quadratic function, the
function can be directly computed without any fitting routine. This process is illustrated in Fig. 2.
It is important to note that only fine axial regions from the current coarse axial region are used to
construct the source, guaranteeing that material properties are constant across the extent of the fit.

If a given reactor is 400 cm in axial length with cross-sections reasonably constant over axial
regions of 15 cm, roughly 30 coarse axial regions would be required for each 2D region. The coarse
axial intervals would be divided into sufficiently many fine axial regions to converge the source.

Page 3 of 14



Geoffrey Gunow, et al.

z

•
•

•

Neutron Source

Figure 2. Depiction of quadratic source computation in which the stack on the left represents
fine axial regions colored by constant cross-section values. The plot on the right depicts on-
the-fly quadratic source computation.

With the assumption of 5 fine axial regions per coarse axial, this results in 150 fine axial regions per
2D region across which fluxes and sources are tallied.

2.3 Quadratic Source Computation

With the implementation of higher order axial sources, the number of floating point operations
(FLOPs) per angular flux intersection greatly increases. To analyze the computational performance,
we first need to consider the MOC equations over the constant cross-section fine axial regions
across which the equations are applied. We are primarily concerned with two computations: the
attenuation of the angular flux ψ for a particular energy group along a track and the contribution
of that angular flux to the scalar flux φ of the fine axial region. To determine the angular flux
attenuation, ψ is defined as a function of distance s traversed along the track in the fine axial region
with total cross-section Σt. Whereas the normal approximation of a constant source q0 leads to
simple exponential attenuation given by Eq. 1, the angular flux attenuation with a quadratic source
approximation leads to a much more computationally demanding equation.

ψ(s) = ψ(0)e−Σts +
q0

Σt

(
1− e−Σts

)
(1)

To derive the equations for a quadratic source approximation, a definition for the quadratic
source first needs to be defined. The neutron source q as a function of axial distance z is given by
Eq. 2.

q(z) = c0 + c1z + c2z
2. (2)
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To solve the transport equation, the source needs to be presented as a function of traversed
distance s. This requires a change of variables presented in Eq. 3 with θ representing the polar
angle and zin representing the axial height of the track entering the fine axial region. This yields the
source as function of s presented in Eq. 4.

z = s cos θ + zin (3)

q(s) =
(
c0 + c1zin + c2z

2
in

)
+ (c1 + 2c2zin) (s cos θ) + c2 (s cos θ)2

= q0 + q1s+ q2s
2 (4)

Remembering that the integral form of the transport equation in the MOC formulation can be
presented as

ψ(s) = ψ(0)e−Σts +

s∫
0

ds′q(s′)e−Σt(s−s′), (5)

the resulting angular flux attenuation equation for quadratic sources is given by

ψ(s) = ψ(0)e−Σts +
q0

Σt

(
1− e−Σts

)
+
q1 cos θ

Σ2
t

(
Σts+ e−Σts − 1

)
+
q2 cos2 θ

Σ3
t

(
Σts (Σts− 2) + 2

(
1− e−Σts

))
. (6)

The scalar flux φ can be calculated using the angular flux attenuation of all tracks crossing the
region. Eq. 7 shows the calculation of the scalar flux φ as a weighted sum of the average angular
flux ψ̄k for all tracks k that traverse a distance lk across the region. The track weights are denoted
wk and the volume of the region is V .

φ =
4π

V

∑
k∈V

wklkψ̄k. (7)

For the flat source approximation, the average angular flux ψ̄ for a given track can be calculated
by Eq. 8 where ψ(0) is the angular flux of a track entering the region and ψ(l) is the angular flux
leaving the region after traversing a distance l.

ψ̄ =
ψ(0)− ψ(l)

lΣt

+
q0

Σt

(8)
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This is simple to calculate as the angular flux attenuation ψ(0)−ψ(l) has already been calculated
in Eq. 1 and the constant q/Σt term can be added to each scalar flux tally after the transport sweep.
For quadratic sources, the calculation of the average angular flux is not as simple, with the required
calculation given in Eq. 9.

ψ̄ =
1

l

[
1

Σ2
t

(
q0Σtl + (Σtψ(0)− q0)

(
1− e−Σtl

))
+
q1 cos θ

2Σ3
t

(
Σtl (Σtl − 2) + 2

(
1− e−Σtl

))
+
q2 cos2 θ

3Σ4
t

(
Σtl (Σtl (Σtl − 3) + 6)− 6

(
1− e−Σtl

))]
(9)

Notice that in both the computation of the angular flux attenuation and average scalar flux for
quadratic sources, there are three exponential terms instead of just one, as is the case with the flat
source approximation. With efficient computation, this fact alone does not add much computational
work as the exponential only needs to be computed once and then reused. However, there is a
significant increase in the number of multiplications, causing a large increase in the required number
of FLOPs. Due to the length of the equation, there is also increased register pressure as the number
of values needed to be stored exceeds the space available in the registers. Therefore, great care
should be taken in efficiently computing the attenuation and contribution to the scalar flux.

3 IMPLEMENTATION & PERFORMANCE RESULTS

3.1 SimpleMOC Application

The SimpleMOC application is an Open Source software project available online [11]. It is
written in C, using MPI for inter-node distributed memory communication and OpenMP for on-node
shared memory threading.

Storing flux data for all 3D tracks across the full reactor is impractical for a single computer to
handle due to memory requirements and reasonable time-to-solution constraints [12]. Therefore,
the problem is domain decomposed to many nodes in a distributed memory fashion using MPI.
This allows for each node in the problem to only handle a small portion of the geometry of the
reactor, greatly reducing the computational and memory burdens of each node. However, domain
decomposition also adds in the burden of storing and exchanging boundary flux data for each
characteristic track in the calculation. This new requirement significantly increases the memory
footprint requirement of each node, but also allows for much larger problems to be handled than
would be tractable by a single node.

This section investigates the performance characteristics of the SimpleMOC application when
run on a variety of computing architectures. The performance scaling of both single node archi-
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tectures (thread performance) and many node systems (communication costs) are presented and
discussed.

3.2 Multi-Node Results

For our target problem, the BEAVRS benchmark [13], we estimate that our formulation of
the 3D MOC transport algorithm, as represented by SimpleMOC, requires approximately 75 TB
of data when distributed across multiple nodes, assuming the parameters given in Table I. This
is primarily (over 94%) composed of boundary flux data that is computed and then exchanged
between neighboring nodes after each sweep until convergence of the problem solution. As the
amount of data exchanged between sweeps is significant (nearly the full memory available to each
node between each sweep), there exists the potential for significant communication penalty if the
computational time required for attenuating neutron fluxes through the characteristic lines of the
domain is very small. To investigate these concerns, a weak scaling study (where the problem size
per node remains constant throughout scaling) was performed with the SimpleMOC application
on the IBM Blue Gene/Q Supercomputer Mira at Argonne National Laboratory, as shown in
Fig. 3. This weak scaling study represents a problem size per node of approximately 970 million
geometrical track segments to process and 12.5 GB of boundary flux data to exchange for a single
sweep – corresponding to the workload per node of the full BEAVRS benchmark when distributed
across 5,780 nodes. These results show that the algorithm scales extremely well through 512 nodes,
achieving a stable wall time despite the increase in overall total problem size as nodes were added.

Table I. Anticipated parameters for a converged 3D MOC solution of a PWR core.
Parameter Dimension

Height (z) 400 cm
Assembly width (x and y) 21.24 cm

Geometry layout 17× 17 assemblies
Radial ray spacing 0.05 cm
Axial ray spacing 0.25 cm

Number of azimuthal angles 64
Number of polar angles 10

Number of energy groups 100
Axial source spacing 10 cm

Fine axial regions per source 5

Further investigation was performed by implementing wall-time counters into the SimpleMOC
source code to indicate the amount of time spent in each particular phase of the computation (e.g.,
flux attenuation, global statistical reductions, border flux communication exchange). This allowed
us to determine the communication overhead of the computation, and whether or not there was
sufficient work to be performed between communication rounds to ensure that our algorithm is not
communication bound. As shown in Fig. 3, we can see that the runtime of the calculation is in fact
dominated by the core computational task of the algorithm (i.e., attenuation of neutron fluxes along
a track). Only 2.3% of the runtime is spent on data exchange between nodes, a ratio which remains
constant for all configurations that we examined. These results indicate that our implementation of
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the 3D MOC algorithm is able to efficiently map onto many node systems without worry of any
significant communication overhead.
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Figure 3. SimpleMOC Weak Scaling on IBM Blue Gene/Q Mira, up to 512 nodes

3.3 Single Node Results

Understanding the single node, shared memory performance characteristics of an algorithm is
key to predicting time-to-solution of a full application as well as performance of an application on
future high performance computing (HPC) architectures. For instance, applications that are primarily
memory bandwidth bound or experience frequent computational stalls due to thread contention
will likely be poor candidates for next generation architectures, as the number of cores per node is
multiplying at a much faster rate than bandwidth and latency masking resources. Applications that
feature high compute intensities (i.e., the number of floating point operations per memory load) and
are able to be expressed in terms of wide SIMD vector operations will run very efficiently on next
generation HPC architectures.

3.3.1 Strong Scaling

To determine the performance characteristics of our formulation of the 3D MOC algorithm, we
performed strong scaling studies on two current generation HPC systems: a single node of the IBM
Blue Gene/Q supercomputer Mira featuring16 cores (64 threads), and a single node of a dual socket
Xeon E5-2650 system with 16 cores (32 threads). Furthermore, we instrumented the SimpleMOC
application using PAPI performance counters in order to gain deeper insight into hardware resource
usage and to determine where the bottleneck occurs in the application [14]. The figure of merit in
SimpleMOC is the time per intersection, which indicates the amount of time spent computing the
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attenuation factors and quadratic source contributions of a single energy neutron flux across a single
geometric segment of a characteristic track within the reactor.

3.3.2 Xeon Node Results
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Figure 4. SimpleMOC performance scaling on 16-core Xeon Node

Fig. 4a and Fig. 4b show that the code scales well out to the maximum number of cores on the
system. When hardware threads are also added allowing for 2 threads per core for the Xeon system,
we find that performance increases significantly. Gains from hardware threading were significant,
showing a 34% speedup over only running a single thread per core. Our code was able to achieve a
time per intersection of 12.3 ns for a single thread, and 0.77 ns when running all 32 threads on the
Xeon node.

3.3.3 Hardware Resource Usage

We were able to deduce a number of parameters from the PAPI performance counters as
well, such as floating point operations per second and main memory bandwidth usage. Fig. 5a
shows clearly that our application uses only a very small percentage of the maximally available
bandwidth of the system (as compared to the STREAM benchmark [15], which represents the
maximal bandwidth usage attainable by a normal user application). Fig. 5b shows the floating
point resource usage of SimpleMOC when compared to LINPACK, which is a standard benchmark
for determining the maximum achievable floating point performance of a user application on a
given system [16]. We can see that SimpleMOC is in fact using a huge percentage of the peak
FLOP resources available on the system, nearly 60% of the FLOP performance that the LINPACK
benchmark achieves. This is an incredibly high number, as most HPC applications often only
achieve 5-10%.

The excellent FLOP utilization of the SimpleMOC application can be attributed to the fact
that the inner portion of the kernel (which composes 97.7% of the runtime of the application) is
composed of several computationally intense loops over all energy groups in the simulation. As our
benchmark reactor problem tracks 100 energy groups, and these inner loops can be expressed in an
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Figure 5. SimpleMOC performance profile on 16-core Xeon Node

easily vectorizable nature, the compiler is able to vectorize these loops using SIMD instructions to
take advantage of the vector widths of the floating point units of both the Blue Gene/Q and Xeon
architectures. To achieve performance of this level, the source code was aggressively optimized to
ensure that all inner loops were properly vectorized by the compiler.

This highlights the importance to the performance of the algorithm of placing energy groups as
the inner loop of the computation. Several other configurations are possible, such as placing the
polar angle in the inner loop, but experimentation revealed that energy groups served the role far
better due to their higher loop iteration count (100 energy groups vs. only 10 polar angles, for our
target problem). This is due to the slight overhead of using vector instructions as compared to scalar
instructions, with the vector instructions not paying dividends over scalar until there are usually
more than 16 to 32 iterations in the loop.

3.3.4 Performance Sensitivity to Problem Size

In order to determine the impact of problem size on performance we varied the axial ray spacing
and measured both the sweep time and the time per intersection. As shown in Table II, overall
sweep time for the calculation was directly related to axial ray spacing, indicating that there is no
performance loss due to variations in problem size. The time per intersection remained constant at
0.77 ns, further demonstrating that SimpleMOC is able to achieve good performance regardless of
problem size.

Table II. Axial Ray Spacing Impact on Sweep Time and Performance
Axial Ray Spacing (cm) Sweep Time (s) Time per Intersection (ns)

1.0 19.73 0.77
0.5 38.79 0.77

0.25 76.96 0.77
0.125 152.79 0.77
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3.3.5 Blue Gene/Q Node Results

Fig. 6 shows the strong scaling of SimpleMOC on a single node of the Blue Gene/Q supercom-
puter. Using all 64 threads on the node SimpleMOC was able to achieve a time per intersection of
7.11 ns. This result shows that single node performance was 9.2 times slower on the Blue Gene/Q
architecture when compared to the Xeon system, which is expected because of the large power
usage differential between the two systems. A Blue Gene/Q CPU uses 31.25 W under floating point
conditions running all 64 threads [17] compared to the rated combined thermal design power of
190 W for two Xeon E5-2650 chips [18]. This power differential is widened further by the Xeon’s
higher DRAM power costs as well as larger board and power supply losses. Speedup is not shown
for the BG/Q architecture as the architecture heavily relies on hardware threading due to its lack of
an out of order execution pipeline. This can lead to misleading results.
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Figure 6. SimpleMOC Strong Scaling on 16-core node of Blue Gene/Q

3.4 Scaling Projections on Future Generation Computer Architectures

Next generation high performance computation architectures are likely to feature huge numbers
of processing cores per node and wide SIMD vector floating point units [19–22]. Both of these trends
meet the mandate to increase the overall floating point capacity of systems without increasing the
amount of power required. Furthermore, these next generation systems are likely to only marginally
increase their available bandwidth to main memory, which is expensive both economically and from
a power standpoint, highlighting the extreme importance for algorithms to achieve high compute
intensities.

In this light, our formulation of the 3D MOC algorithm, as implemented in SimpleMOC, should
map extremely well to architectures of the future due to its ability to utilize wide SIMD vector
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units as well as having minimal on-node bandwidth requirements. Additionally, the inter-node
communication costs of the algorithm are very low, allowing the algorithm to scale to huge numbers
of nodes with little overhead.

4 CONCLUSIONS

Three-dimensional solutions of the neutron transport equation have recently become feasible,
allowing for higher fidelity modeling of neutron physics. One method available to solve the neutron
transport equation is MOC. Here we have demonstrated a mini-app named SimpleMOC which
replicates the performance of an optimized 3D MOC solver under a variety of assumptions intended
to boost computational performance, including axially-quadratic sources.

With the addition of the quadratic sources, SimpleMOC performance is shown to highly utilize
the floating point capacity. With trends in the development of next generation high performance com-
puting architectures placing high importance on utilization of floating point capacity, SimpleMOC
shows great potential for future scalability. Several key results are highlighted in Table III, showing
that the SimpleMOC application is capable of excellent scaling on many-node supercomputing
architectures as well as extremely high resource utilization of each node.

Table III. Summary of Key Results
Blue Gene/Q Inter-node Communication Costs (512 Nodes) 2.3% of Runtime

Blue Gene/Q Time per Intersection 7.11 ns
Xeon Time per Intersection 0.77 ns

Xeon Bandwidth Usage 16% of System
Xeon FLOP Usage 57% of System
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